Plants supply us – and other organisms – with many solid resources, e.g. food, medicines, shelter, drinks. Something that is more intangible – but no less important for that – is the inspiration plants provide in the field of biomimetics (biomimicry), ‘the examination of nature, its models, systems, processes, and elements to emulate or take inspiration from in order to solve human problems’. The latest example from the plant world concerns hydration-dependent opening of the seed capsules of the ice plant Delosperma nakurense, studied by Matthew Harrington et al. (Nature Communications 2: 337; doi:10.1038/ncomms1336). In language not usually seen in connection with biological phenomena, the team found that ‘this reversible origami-like folding pattern proceeds via a cooperative flexing-and-packing mechanism actuated by a swellable cellulose layer filling specialized plant cells…’, which is ‘…translated into a bidirectional organ movement through simple geometric constraints embedded in the hierarchical architecture of the ice plant valves’. Is it just me who thinks that this style of expression takes away some of the magic and mystery inherent in the natural phenomenon itself? Be that as it may, musing on the relevance of this phenomenon, the group propose that: ‘Extracted principles from this reliable and reversible actuated movement have relevance to the emerging field of “programmable matter” with applications as far-reaching as the design of satellites and artificial muscles’. Ice-plant-inspired artificial muscles? Extra-terrestrial satellites? A scientific paper illustrated with genuine origami figures? Now that really is ‘cool’ (and maybe just a bit magical?)! On a related note, researchers at the University of Michigan and Penn State University (both USA) are exploring the biomimetic potential of the aptly named sensitive plant (Mimosa pudica) – which ‘drops’ its leaflets when touched – to develop a new class of adaptive structures ‘designed to twist, bend, stiffen and even heal themselves’. And – in a 21st Century take on a much older idea – Evan Ulrich and co-workers (Bioinspiration & Biomimetics 5: 045009; doi:10.1088/1748-3182/5/4/045009) have designed remote-controlled robotic versions of ‘samaras’, the helicopter (strictly, monocopter)-like fruits of certain trees such as those of the Acer genus. Ulrich plans to develop the technology for applications in satellite communications and 3-D mapping (http://www.physorg.com/news/2011-01-robotic-tree-helicopter-video.html). For those who want to find out more about plant-inspired engineering solutions, I recommend Felix Paturi’s book Nature, the mother of invention . [And in case you were wondering, origami is NOT the Japanese art of botanicomimetics.]
You may also like
Dragons, coconuts and skyscrapers…
Botanists aren't always genetic engineers. This week Nigel Chaffey finds some have branched out into civil engineering.
April 18, 2017
Silica nanoparticles and structural leaf coloration
Blue iridescence is produced by both the helicoidal wall and silica nanoparticles in the helicoid.
January 3, 2014
Plants plugging the gap
Image: Richard Wheeler, Wikimedia Commons. Engineers – and artists – have often sought inspiration from the natural world. Take for example the story of the discovery of Velcro by a Swiss gentleman when he observed how...
September 9, 2010
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
To find out more, including how to control cookies, see here: Cookie Policy
Read this in your language
The Week in Botany
On Monday mornings we send out a newsletter of the links that have been catching the attention of our readers on Twitter and beyond. You can sign up to receive it below.
@BotanyOne on Mastodon
Loading Mastodon feed...