Image: Fir0002/Flagstaffotos/Wikimedia Commons.

Every day is Dewsday in the forest…

Image: Fir0002/Flagstaffotos/Wikimedia Commons.
Image: Fir0002/Flagstaffotos/Wikimedia Commons.

The dew pointΒ is β€˜the temperature to which a volume of humid air must be cooled… for water vapor to condense into liquid water’, and is usually an early-morning or early-evening phenomenon in nature. OK, but, β€˜what is the point of dew’? That is a different question, but one which might have been answered by Michael Latakos et al. – at least in a botanical context. In their intriguing studyΒ they demonstrate that dew – β€˜condensed water that forms on a solid surface’ – is generated on the bark of understorey trees in a lowland forest in French Guiana until early afternoon, because of the thermal properties of the trunks. This extensive window of hydration – up to 0.69Β mm of dewfall a day – is instrumental in prolonging photosynthesis, of epiphytic crustose lichens in particular. The team propose that this phenomenon may be a more general feature of forest habitats worldwide, and that this hitherto unrecognised mechanism of midday dew formation contributes to the water supply of most corticolous (bark-dwelling) organisms. Nice work!

In addition to the article, I also recommend Michael Proctor’s thoughtful commentary thereon. Coincidentally, though, similar conclusions about the importance of dew were reached by Khumbudzo Maphangwa et al., who examined an altogether drier environment where β€˜differential interception and evaporation of fog, dew and water vapour and elemental accumulation by lichens explain their relative abundance in a coastal desert’. Just as new hydrobotanical discoveries are made above ground, news of another, down below. Using neutron tomography, Ahmad Moradi and co-workers have quantified and 3-D visualized the water content in situ in the rhizospheres of chickpea (Cicer arietinum), white lupin (Lupinus albus) and maize (Zea mays). Finding that – counter-intuitively – soil water content increased towards the root surface for all three species, the team propose that plants modify the hydraulic properties of the rhizosphere’s soil in a way that improves water uptake under dry conditions. This β€˜reservoir’ of water can be viewed as a reserve that helps the plants overcome short periods of drought. Hydraulic lift (sorry, redistribution – ; Rebecca Neumann and Zoe Cardon), anyone?

Nigel Chaffey

I am a botanist and former Senior Lecturer in Botany at Bath Spa University (Bath, near Bristol, UK). As News Editor for the Annals of Botany I contributed the monthly Plant Cuttings column to that august international botanical organ - and to Botany One - for almost 10 years. I am now a freelance plant science communicator and Visiting Research Fellow at Bath Spa University. I continue to share my Cuttingsesque items - and appraisals of books with a plant focus - with a plant-curious audience. In that guise my main goal is to inform (hopefully, in an educational, and entertaining way) others about plants and plant-people interactions, and thereby improve humankind's botanical literacy. Happy to be contacted to discuss potential writing - or talking - projects and opportunities.
[ORCID: 0000-0002-4231-9082]

Read this in your language

The Week in Botany

On Monday mornings we send out a newsletter of the links that have been catching the attention of our readers on Twitter and beyond. You can sign up to receive it below.

@BotanyOne on Mastodon

Loading Mastodon feed...

Audio


Archive