Image: Britton & Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Charles Scribner’s Sons, New York.

Ouch! That must hurt…

The model plant Arabidopsis thaliana seems not to be such a good model after all

Image: Britton & Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Charles Scribner’s Sons, New York.
Image: Britton & Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Charles Scribner’s Sons, New York.

Schadenfreude (taking pleasure in the misfortunes of others) is not the most attractive of human traits, but it can be so satisfying. And I bet there’s more than a little of that throughout the world occasioned by the discovery that the model plant Arabidopsis thaliana  seems not to be such a good model after all. And the reason for this global wave of ‘arabidisenchantia’ relates to a rather fundamental property of cells known as nonsense-mediated mRNA decay (NMD). NMD is a so-called surveillance pathway that reduces errors in gene expression by eliminating aberrant m(essenger)RNAs that would otherwise encode incomplete polypeptides. Important though this process is for cell survival, it had been assumed that plants used it in a different way to animals because a gene for a key protein – SMG1 (phosphatidylinositol 3-kinase-related kinase)in the pathway had not been identified in Arabidopsis thaliana (afka* ‘the universal plant’), nor in fungi. However, and thanks to iconoclastic (albeit probably unintentionally)  work by James Lloyd and Brendan Davies, we [arabothalocentric plant biologists and those who needs must rely on their abundantly-funded researches – which is pretty much all of the rest of us…] can all sleep more soundly in our beds. They show that SMG1 – the gene that codes for SMG1 – is not animal-specific, but is found ‘in a range of eukaryotes, including all examined green plants [my emphasis] with the exception of A. thaliana’. The misconception about the importance of SMG1 in plants appears to have arisen because the gene was lost from A. thaliana ’s genome 5–10 millions of years ago. Interestingly, SMG1 is found in the genome of the closely related A. lyrata… So, A. thaliana is unique after all(!), though not in quite the way its promoters (pun intended…?) might have liked. But if thale cress has carelessly lost this gene, what else has it lost (but which may have been retained by more typical plants)…? I predict more Arabidopsis applecart-upsetting in the future…
* afka = as formerly known as…

Nigel Chaffey

I am a botanist and former Senior Lecturer in Botany at Bath Spa University (Bath, near Bristol, UK). As News Editor for the Annals of Botany I contributed the monthly Plant Cuttings column to that august international botanical organ - and to Botany One - for almost 10 years. I am now a freelance plant science communicator and Visiting Research Fellow at Bath Spa University. I continue to share my Cuttingsesque items - and appraisals of books with a plant focus - with a plant-curious audience. In that guise my main goal is to inform (hopefully, in an educational, and entertaining way) others about plants and plant-people interactions, and thereby improve humankind's botanical literacy. Happy to be contacted to discuss potential writing - or talking - projects and opportunities.
[ORCID: 0000-0002-4231-9082]

Read this in your language

The Week in Botany

On Monday mornings we send out a newsletter of the links that have been catching the attention of our readers on Twitter and beyond. You can sign up to receive it below.

@BotanyOne on Mastodon

Loading Mastodon feed...

Audio


Archive