The Angmaat Formation above Tremblay Sound on the Baffin Island coast.
Home » Plant records: Unexpectedly exciting early photosynthesis

Plant records: Unexpectedly exciting early photosynthesis

An event buried in ‘The Boring Billion’ might have been the most important incident to transform the planet.

Name: The Boring Billion

Scientific name: Meso-Proterozoic (with a bit of Palaeo- and Neo-) between 1.8 and 0.8 Gya

Known for: Incredible stability, being listed in scientific literature as the dullest time on Earth

Record broken: Earliest eukaryotic photosynthesis, the process that transformed the planet

If you’re looking for the most important event in Earth’s past, then the origin of photosynthesis in plants is strong contender. Now research into early fossils of algae has given an estimate of when that happened. The date is 1.25 billion years ago, a date that falls in a period dubbed ‘The Boring Billion‘ by geologists.

The Angmaat Formation above Tremblay Sound on the Baffin Island coast.
The Angmaat Formation above Tremblay Sound on the Baffin Island coast. Bangiomorpha pubescens fossils occur in this roughly 500-meter thick rock formation. Photo: Timothy Gibson

The study, published in the journal Geology, examines the age of the fossilized algae, Bangiomorpha pubescens, which were first discovered in rocks in Arctic Canada in 1990. The microscopic organism is believed to be the oldest known direct ancestor of modern plants and animals, but its age was only poorly dated, with estimates placing it somewhere between 720 million and 1.2 billion years.

The new findings also add to recent evidence that an interval of Earth’s history often referred to as the Boring Billion may not have been so boring, after all. From 1.8 to 0.8 billion years ago, archaea, bacteria and a handful of complex organisms that have since gone extinct milled about the planet’s oceans, with little biological or environmental change to show for it. Or so it seemed. In fact, that era may have set the stage for the proliferation of more complex life forms that culminated 541 million years ago with the so-called Cambrian Explosion.

“Evidence is beginning to build to suggest that Earth’s biosphere and its environment in the latter portion of the ‘Boring Billion’ may actually have been more dynamic than previously thought,” says McGill PhD student Timothy Gibson, lead author of the new study.

Pinpointing the fossils’ age

To pinpoint the fossils’ age, the researchers pitched camp in a rugged area of remote Baffin Island, where Bangiomorpha pubescens fossils have been found There,despite the occasional August blizzard and tent-collapsing winds, they collected samples of black shale from rock layers that sandwiched the rock unit containing fossils of the alga. Using the Rhenium-Osmium (or Re-Os) dating technique, applied increasingly to sedimentary rocks in recent years, they determined that the rocks are 1.047 billion years old.

“That’s 150 million years younger than commonly held estimates, and confirms that this fossil is spectacular,” says Galen Halverson, senior author of the study and an associate professor in McGill’s Department of Earth and Planetary Sciences. “This will enable scientists to make more precise assessments of the early evolution of eukaryotes,” the celled organisms that include plants and animals.

Because Bangiomorpha pubescens is nearly identical to modern red algae, scientists have previously determined that the ancient alga, like green plants, used sunlight to synthesize nutrients from carbon dioxide and water. Scientists have also established that the chloroplast, the structure in plant cells that is the site of photosynthesis, was created when a eukaryote long ago engulfed a simple bacterium that was photosynthetic. The eukaryote then managed to pass that DNA along to its descendants, including the plants and trees that produce most of the world’s biomass today.

Origins of the chloroplast

Once the researchers had gauged the fossils’ age at 1.047 billion years, they plugged that figure into a “molecular clock”, a computer model used to calculate evolutionary events based on rates of genetic mutations. Their conclusion: the chloroplast must have been incorporated into eukaryotes roughly 1.25 billion years ago.

“We expect and hope that other scientists will plug this age for Bangiomorpha pubescens into their own molecular clocks to calculate the timing of important evolutionary events and test our results,” Gibson says. “If other scientists envision a better way to calculate when the chloroplast emerged, the scientific community will eventually decide which estimate seems more reasonable and find new ways to test it.”

Source: McGill University.

Dale Maylea

Dale Maylea was a system for adding value to press releases. Then he was a manual algorithm for blogging any papers that Alun Salt thinks are interesting. Now he's an AI-assisted pen name. The idea being telling people about an interesting paper NOW beats telling people about an interesting paper at some time in the future, when there's time to sit down and take things slowly. We use the pen name to keep track of what is being written and how. You can read more about our relationship with AI.

Read this in your language

The Week in Botany

On Monday mornings we send out a newsletter of the links that have been catching the attention of our readers on Twitter and beyond. You can sign up to receive it below.

@BotanyOne on Mastodon

Loading Mastodon feed...

Audio


Archive