Home » Lianas more likely to infest smaller trees

Lianas more likely to infest smaller trees

Sometimes it takes a shorter plant to help a liana get to the top.

Woody climbing plants, known as lianas, are more likely to infest smaller trees in Malaysian forests and therefore stop them growing to their full potential, which may have implications for climate change. The research by Catherine Waite and colleagues was carried out in Danum Valley in Malaysia, and published in the Journal of Ecology.

The study’s findings contrast with previous liana studies in Neotropical forests (Central America, the Caribbean, and South America), which alters our understanding of tropical forests and their role in the global carbon cycle.

Lianas are commonly found in tropical rainforests, where they compete intensely with trees for light, nutrients and water. Previous research has found that this can slow tree growth, and even kill trees. As a result, lianas can dramatically reduce carbon uptake and storage in tropical forests.

Because we depend on tropical forests to take up some of our carbon dioxide emissions, this has wide-reaching implications for global warming. To better understand the problem posed by lianas, and how much of a threat they pose to the global carbon cycle, experts need to uncover where lianas are growing, and why.

The research is the first of its kind to be carried out in a Palaeotropical forest canopy (tropical areas of Africa and Asia). The team used a drone and a laser scanner which creates a 3D model of an area, as well as conducting ground surveys, to assess the coverage of lianas.

A tree almost looking like a brain. The unusual viewpoint directly over the tree allows us to peer down into the crown. Around it the perspective makes it look like the other trees are scattered growing away from it.
Aerial photo of forest in Danum Valley in Malaysia taken by a drone used in the study. Image: Dr Catherine Waite, University of Nottingham.

Dr Waite said: “Tropical forests are an incredibly important – and natural – system for carbon capture and storage, helping to mitigate climate change. Lianas clearly threaten forests’ abilities to do this and so it’s key that we understand the spread and characteristics of lianas to determine what may drive their increase in the future.”

To date, the forests of the Palaeotropics, and especially those of Southeast Asia, have received very little attention. Southeast Asian liana studies are particularly important, however, as these forests tend to be home to much larger trees, with significantly higher aboveground biomass than Neotropical forests.

For example, Southeast Asian forests produce approximately 50 per cent more wood than in Amazonia. This means that Palaeotropical trees store more carbon and draw down more carbon from the atmosphere, and so may play a bigger role in the global carbon balance, and therefore, in mitigating climate change.

Dr Waite adds: “In this study, we found taller trees were less often and less heavily infested by lianas than shorter trees, which is opposite to well-established Neotropical findings. This suggests a fundamental difference between Neotropical and Southeast Asian forests. Considering that most liana studies have focused on the Neotropics, this highlights the need for additional studies in other Palaeotropical regions to clarify potential differences and enable us to better understand liana impacts on tropical forest ecology, carbon capture and storage, and ultimately, on climate change.”

Dr Geertje van der Heijden, a co-author on the study, said. “Neotropical studies have shown that presence of lianas in tropical forests has broad and important ramifications for the global carbon cycle and therefore for the ability of tropical forests to mitigate climate change. Knowing more about which trees they infest therefore helps making better predictions on their impact on tropical forests globally.”

In their paper Waite and colleagues conclude “This work underlines the importance of combined ground and remote-sensing data for understanding the emerging and critical impacts of lianas at large scales. The use of [unoccupied aerial systems] and the comprehensive analytical framework employed here to examine what determines liana occurrence and load and predict liana load at individual tree crown level may allow extension of the research into other locations and/or forest types, such as logged forests.”


Waite, C.E., van der Heijden, G.M.F., Field, R., Burslem, D.F.R.P., Dalling, J.W., Nilus, R., Rodríguez-Ronderos, M.E., Marshall, A.R. and Boyd, D.S. (2022) “Landscape‐scale drivers of liana load across a Southeast Asian forest canopy differ to the Neotropics,” The Journal of Ecology. Available at: https://doi.org/10.1111/1365-2745.14015.

Dale Maylea

Dale Maylea was a system for adding value to press releases. Then he was a manual algorithm for blogging any papers that Alun Salt thinks are interesting. Now he's an AI-assisted pen name. The idea being telling people about an interesting paper NOW beats telling people about an interesting paper at some time in the future, when there's time to sit down and take things slowly. We use the pen name to keep track of what is being written and how. You can read more about our relationship with AI.

Read this in your language

The Week in Botany

On Monday mornings we send out a newsletter of the links that have been catching the attention of our readers on Twitter and beyond. You can sign up to receive it below.

@BotanyOne on Mastodon

Loading Mastodon feed...