Plant hormones to help prevent Striga invasion

Blocking the biosynthesis of canonical strigolactones by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth.

As part of a multipronged approach to prevent infestations by the parasitic plant Striga hermonthica, researchers are unravelling the role of plant hormones, known as strigolactones (SLs).

Cereal crops release SLs that regulate plant architecture and play a role in other processes related to plant development and stress response. The SLs released by plant roots attract mycorrhizal fungi, which provide plant nutrients. But strigolactones also induce germination and invasion by the parasitic plant Striga, with severe impacts on agricultural production, particularly on cereal yields in Africa.

A field of stalks of sorghum in rows. Around the base of each stalk is a vivid green plant with striking purple flowers. The sorghum in contrast looks a pale yellowy green.
A field of the crop sorghum infected with Striga. Image: © 2022 KAUST; Muhammad Jamil; Jian You Wang.

In an important discovery, the team has recently shown that canonical SLs do not affect plant architecture in rice.

The researchers employed CRISPR/Cas9 technology to generate rice lines without canonical SLs and compared them to wild-type plants. The shoot and root phenotypes did not differ significantly between the mutants and the wild type, indicating that canonical SLs are not major regulators of rice architecture.

“Knowing which SLs regulate plant architecture and other functions, such as establishing symbiosis with beneficial mycorrhizal fungi or enabling invasion by root parasitic plants, will allow us to optimize and engineer one trait without affecting others,” explains Jian You Wang, a postdoc in Al-Babili’s lab.

The research showed that canonical SLs do contribute to a symbiosis with mycorrhizal fungi and play a major role in stimulating seed germination in root parasitic weeds.

“Decreasing their level, or even completely knocking out their biosynthesis, can significantly reduce the damage caused by Striga and other root parasitic plants without causing severe plant architectural changes or having a large negative impact on plant mycorrhization,” says Wang.

Modulation of SL content by gene editing is a long-term solution, but the application of specific inhibitors of SL biosynthesis may lead much faster to cereal plants lacking the canonical strigolactones.

The team set out to identify chemicals that inhibit canonical SL biosynthesis in rice. They found a chemical enzyme inhibitor TIS108 significantly lowered Striga infestation without affecting plant growth or grain yield.

They also tested the effect of TIS108 on Indica rice and sorghum, both major crops in Striga- infested regions in Africa. Once again, they observed lower Striga germination activity from the root exudates isolated from treated plants.

Al-Babili says direct application of TIS108, as well as employing gene editing, represents promising strategies for alleviating the threat posed by Striga and other root parasitic plants to global food security.

READ THE ARTICLE

Ito, S., Braguy, J., Wang, J.Y., Yoda, A., Fiorilli, V., Takahashi, I., Jamil, M., Felemban, A., Miyazaki, S., Mazzarella, T., Chen, G.-T.E., Shinozawa, A., Balakrishna, A., Berqdar, L., Rajan, C., Ali, S., Haider, I., Sasaki, Y., Yajima, S., Akiyama, K., Lanfranco, L., Zurbriggen, M.D., Nomura, T., Asami, T. and Al-Babili, S. (2022) “Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice,” Science advances, 8(44). Available at: https://doi.org/10.1126/sciadv.add1278.

Dale Maylea was a system for adding value to press releases. Now he's a manual algorithm for blogging any papers that Alun Salt thinks are interesting. The idea being telling people about an interesting paper NOW beats telling people about an interesting paper at some time in the future, when there's time to sit down and take things slowly.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: